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Abstract

A new computational method for investigating interactions between bubbles and turbulence has been developed. Both liquid and

gas phases are treated as incompressible fluids and solved by a finite volume method, while the interface between the phases is

resolved by a front-tracking method. The accuracy validation carried out for a problem of a single rising bubble has shown this

method is capable of simulating flow around deformed bubbles with relatively small number of grid points. Then the method was

applied to a direct numerical simulation of a fully developed turbulent channel flow containing bubbles. Statistics of the friction

coefficient and the modulation of turbulence intensity were obtained, and they were in qualitative agreement with experi-

ments. � 2002 Elsevier Science Inc. All rights reserved.
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1. Introduction

Bubbly flows appear in many engineering and
environmental applications. Understanding the charac-
teristics of bubbly flows is important for the design of
multi-fluid systems or estimating the mass transfer rate
between the atmosphere and the ocean. Bubbly flows
involve wide range of scales from bubble diameter to
macroscopic flow, and the interactions between those
scales make the physics of bubbly flows more complex
than that of single phase flows.

There are three ways to simulate bubbly flows nu-
merically. The three numerical simulation methods differ
in the scale range that is explicitly solved. The first way
is to solve phase-averaged equations of fluid, in which
the macroscopic effect of interactions between phases is
modeled by semi-empirical constitutive equations
(Drew, 1983). The second way is to model the dispersed
phase by point force distributions at discrete location
of dispersed phase (bubbles or solid particles). In this
method, the scale of distances between bubbles or par-
ticles is explicitly solved, but the scale of bubble or

particle size must still be modeled by semi-empirical
equations (Elghobashi and Truesdell, 1992). The third
way is to simulate flows directly by implementing
physical boundary conditions at the interface between
the phases. Although the computational load is highest,
only this method can resolve the full interactions be-
tween two phases. Numerical methods of this type have
been applied mostly to flows around a single bubble or
particles (Ryskin and Leal, 1984; Takagi andMatsumoto,
1995). However, the recent increase in the computer
power has made it possible to apply this method to more
complex bubbly flows. Kajishima et al. (2001) have
studied particle-laden turbulent channel flow using a
direct numerical simulation (DNS) method for solid
particles. Sugiyama et al. (2001) investigated bubbly
flows using a similar method, in which bubbles keep
spherical shape, while Kanai and Miyata (2001) carried
out a DNS of turbulent Couette flow containing de-
formable bubbles by use of the marker density method.

One application of bubbles in which we are particu-
larly interested is reduction of the frictional drag of a
turbulent boundary layer. Many experiments (Madavan
et al., 1985; Guin et al., 1996; Takahashi et al., 1997)
confirmed the reduction of the frictional drag, but the
detailed mechanism how bubbles reduce frictional drag
has not been well understood. This is partially due to the
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experimental difficulties. Detailed information of the
flow is missing, because the dense suspension of bubbles
strongly hinders measurements of the flow by LDV or
PIV. It is also very difficult to control experimental
conditions. Kato et al. (1999) showed that the size of
bubbles generated by injecting air through a hole on the
wall depends more on the wall shear stress than on the
size of the hole. This fact makes it difficult to control the
Reynolds number and the bubble size independently. It
is also difficult to control the other parameters involved
in bubbly flows such as Weber number or Froude
number.

The ultimate goal of this study is to develop a nu-
merical simulation method for solving these problems.
Especially we hope that numerical simulations elucidate
the interactions between bubbles and turbulent bound-
ary layer. Fig. 1 shows a snap photo of the flow dealt
with in this study. It is noted that the size of bubbles is
relatively large, and the effect of the deformation of
bubbles is supposed to be significant. In order to in-

vestigate the interaction between turbulence and bubbles
of this size, DNS methods which simultaneously resolve
turbulence and bubbles are useful. The number of grid
points for performing DNS depends on the ratio of
the bubble size to the boundary layer boundary layer
thickness, and on the number of points required for
resolving a bubble. Therefore we developed a new front-
tracking method, which is capable of modeling de-
formable bubbles with small number of grid points.

The following sections of this paper provide a de-
scription of the numerical method, a validation of the
method for a single rising bubble, and a preliminary
application to a turbulent bubbly channel flow at a low
Reynolds number.

2. Numerical method

2.1. Governing equations

Both water and air phases are treated as incom-
pressible fluids, and the continuity of stress is imple-
mented at the interface. The governing equations for
each phase are the Navier–Stokes equation,
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and the continuity equation
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where xi, ui, and p are the Cartesian coordinate, the
velocity components, and static pressure respectively.
The fluid density q and the kinematic viscosity m take
values of either water or air depending on whether the
center of the computational cell belongs to water or air.

Nomenclature

Anm, Bnm coefficients used in the spherical harmonics
CD drag coefficient
Cf normalized friction coefficient ¼ sw=sw0
D bubble diameter
Dþ bubble diameter in viscous unit ¼ DusH=m
Fr Froude number ¼ Um=

ffiffiffiffiffiffi
gD

p

H half width of the channel
NB number of bubbles
Pnm Legendre associate polynomial
p static pressure
Q second invariant of the velocity gradient

tensor
r bubble radius
Res Reynolds number ¼ usH=m
We Weber number ¼ qU 2

mD=r

t time
tþ nondimensional time in viscous unit ¼ u2s t=m
ui velocity vector
Um mean velocity
us friction velocity ¼

ffiffiffiffiffiffiffiffiffiffi
sw=q

p
xi Cartesian coordinate

Greeks
a mean void ratio
m kinematic viscosity
q fluid density
r surface tension
sw shear stress at the wall
sw0 shear stress at the wall without bubbles

Fig. 1. Photograph of bubbles in a turbulent channel flow (Takahashi

et al., 1997).
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2.2. Interface tracking method

There are several methods for expressing the moving
interface between two fluids, such as the VOF method
(Hirt and Nichols, 1981), the level-set method (Osher
and Sethian, 1998), and the front-tracking method
(Unverdi and Tryggvason, 1992). The VOF and level-set
methods are categorized as the front capturing methods
which track the movement of volume and find the in-
terface in an indirect way. One of the merits of the front
capturing methods is that collision and breakup of in-
terfaces are easily treated. On the other hand, the front-
tracking method tracks the interface directly allowing
more accurate calculation of the curvature of the inter-
face, although treatment of surface re-structuring is
complicated. We use the front-tracking method, since
accurate calculation of the interface curvature is very
important for the flows investigated in this study.

Each bubble is expressed by its center position and
radius distribution around the center as shown in Fig. 2.
Marker particles are placed on each bubble regularly on
a two-dimensional spherical grid ðh;/Þ. In the beginning
of each time step, the positions of the marker particles
are updated using the velocity interpolated from the
rectangular grid for solving the Navier–Stokes equa-
tions. After the marker particles are moved, the position
of the center is updated. Then the radius at each point
rðh;/Þ around the new center is calculated and ex-
panded in a series of spherical harmonic function,

rðh;/Þ ¼
XN
n¼0

Xn

m¼0
Pnmðcos hÞ Anm cosm/f þ Bnm sinm/g

ð3Þ
in which N is the number of the deformation modes
considered, Pnm is Legendre associate polynomial. N is

set to 8 in this study. The coefficients Anm and Bnm are
obtained by numerical integrations.

The primary merit of this merit is that the curvature
of the interface is accurately computed with relatively
small number of grid points. Another advantage is
that deformations of high wave number modes, which
give rise to numerical instabilities, can be filtered out.
Whereas the shortcomings are that the radius must be a
single-valued function of h and /. Therefore, this
method cannot deal with deformations beyond a certain
limit, collision or separation of bubbles.

Since the compressibility of air is neglected, the vol-
ume of the bubble must be constant. The value of the
coefficient A00 is adjusted in the reconstruction proce-
dure of the bubble shape so that the volume of the
bubble is kept at the initial value.

2.3. Solution algorithm

A second-order finite volume method is used for the
spatial discretization on a rectangular grid system fixed
to the space, and a second-order semi-implicit fractional
step method is used for the time integration. At the
beginning of each time step, the positions and shapes of
bubbles are determined, and the values of density and
the kinematic viscosity in each cell are set to values of
water or air. Whether a cell-center point is inside a
bubble or not is judged from Eq. (3). Then the dynamic
boundary condition is set in cells containing interfaces.
The surface tension is treated as a pressure jump across
the interface. The curvature of the interface is calculated
from Eq. (3) analytically. Using this interface boundary
condition the momentum equations (1) are semi-impli-
citly integrated, and then corrected by solving a Poisson
equation for the pressure. The Poisson equation for the
pressure is solved by a multigrid method.

3. Single rising bubble

The accuracy of the computational method was ex-
amined for the problem of a single bubble rising in
quiescent water. Computations were carried out using
maximum of 64	 64	 64 cells for a maximum domain
size of 16 diameters cube. A spherical bubble is initially
placed at the center of the computational domain. The
computational domain is moved at the velocity of
the center of the volume of the bubble. The velocity of
the center is calculated using the history of the positions
at previous 20 steps. A fixed frame of reference is used
for defining the velocity vector of the fluids, and the
movement of the grid is considered in computing the
convective terms of the momentum equation by modi-
fying the volume flux through cell faces. The top face of
the computational domain is treated as an inflow
boundary, and the other five faces are treated as outflowFig. 2. Schematic sketch of the front-tracking method.
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boundaries. At the inflow boundary, the velocity is kept
at zero, and a homogeneous Neumann condition is ap-
plied to the pressure. At the outflow boundaries, the
velocity is linearly extrapolated, and the pressure is kept
at a reference pressure level. In the following presenta-
tion of the results for a single rising bubble, the length
and the velocity scales are nondimensionalized with re-
spect to the bubble diameter and the mean rising speed
of the bubble respectively. The z-axis is taken in the
vertical direction, while x and y-axes are taken in the
horizontal directions.

The results are examined focusing on the drag coef-
ficient CD obtained from the terminal rising velocity.
The influences of the three computational parameters,
the size of the computational domain, the number of
grid points per bubble diameter, and the number of
deformation modes are examined. The bubble diameter
of 2 mm, the domain size of 8 diameters cube, N ¼ 6, 10
grid points per bubble diameter, were used as the stan-
dard condition, and influence of each parameter was
investigated by varying one parameter with the other
parameter being fixed.

Fig. 3 shows that the influence of the domain size is
small when it is larger than 8 diameters. It was observed
that the development of the velocity field around the
bubble was hampered when the size of the computa-
tional domain was not sufficiently large. As a result, the
rising speed was small and the drag coefficient was large.

The influence of the number of deformation modes
(N in Eq. (3)) is shown in Fig. 4. The precision of the
expression of the bubble shape depends on the number
of deformation modes considered. Accordingly, the drag
coefficient is also influenced by this parameter. The final
shape of the bubble of D ¼ 2 mm is almost ellipsoidal,
and the ratio between the long and short axes is about
1.5, which is in good agreement with the experimental
observation by Kubota et al. (1967). Fig. 4 shows that

the drag coefficient almost convergences at N ¼ 6 for the
bubble of this size.

Fig. 5 shows the influence of the number of the grid
points per bubble diameter. It is shown that from eight
to ten grid points per bubble diameter are required for
the drag coefficient to converge. This result is consistent
with Takiguchi et al. (1998), who reported that the re-
quired number was from five to ten for a computation of
flow around a spherical solid particle using a rectangular
grid.

Fig. 6 shows the comparison of the computed drag
coefficient using the previously mentioned standard
conditions versus the bubble diameter and an empirical
formula proposed by Tomiyama et al. (1995). A bubble
of D ¼ 1 mm or smaller is almost spherical and rises
straight up, while a larger bubble is deformed and shows
nonaxisymmetric swing motions. Computations repro-
duce this behavior well, and the calculated values of
CD are in good agreement with the empirical formula.

Fig. 3. Drag coefficient of a single rising bubble in clean water versus

domain size.

Fig. 4. Drag coefficient of a single rising bubble in clean water versus

the number of deformation modes.

Fig. 5. Drag coefficient of a single rising bubble in clean water versus

number of grid points per diameter.
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Fig. 7 shows computed ellipsoidal shape of the bubble
for two diameters D ¼ 1 and 3 mm. The flow and the
shape of the bubbles are axisymmetric and steady at
D ¼ 1 mm, while at D ¼ 3 mm nonaxisymmetric and
unsteady vortex shedding is observed. The time evolu-
tion of the bubble-center position from the starting point
for a bubble of D ¼ 3 mm shown in Fig. 8 indicates a
plane zigzag motion of the bubble. The direction of the
oscillation changes, suggesting that this motion is not
very stable. The wave length of the zigzag motion was
estimated to be about 16 diameters, which is close to the
experimental observation by Ellingsen and Risso (2001)
for D ¼ 2:5 mm. Fig. 9 shows the relation between the
lateral displacement and the inclination of the bubble for
D ¼ 3 mm. The relation agrees with the experiment by
Ellingsen and Risso (2001). The three dimensional
structure of the wake is illustrated in Fig. 10. The wake
structure from the bubble is characterized by a sequence
of vortex loops, and it is very similar to that near a solid

sphere described, for example, by Achenbach (1974). The
vortex shedding and the zigzag motion are synchronized,
and the computed Strouhal number based on the diam-
eter and the mean rising velocity is 0.07. This is in good
agreement with the experiment by Ellingsen and Risso
(2001). This Strouhal number is about half of that for a
solid sphere supported in a uniform flow at the same
Reynolds number of 750 (Achenbach, 1974). This is due
to deformation of the bubble and the difference in the
boundary condition on the surface.

4. DNS of a bubbly turbulent channel flow

4.1. Condition of computations

A fully developed turbulent channel flow containing
bubbles was investigated by the present numerical

Fig. 6. Drag coefficient of a single rising bubble in clean water versus

diameter.

Fig. 7. Computed shape of the bubble rising in clean water. The vectors show an instantaneous velocity field on the plane containing the center of the

bubble. The velocity is relative to the coordinate system moving with the center of the bubble. Velocity vectors at every second grid point are shown.

(a) D ¼ 1 mm and (b) D ¼ 3 mm.

Fig. 8. Time evolution of the center position of a rising bubble of

D ¼ 3 mm.
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method. Before introducing the bubbles, a fully devel-
oped single-phase turbulent channel flow at the Rey-
nolds number Res ¼ 180, based on the friction velocity
us and a half width of the channel H, was computed.
The size of the computational domain was set to
6:4H 	 2H 	 3:2H , in the streamwise, wall-normal and
spanwise directions respectively. A periodic boundary
condition was used in the streamwise and spanwise di-
rections. The x-, y- and z-axes are taken in the stream-
wise, wall-normal and spanwise directions respectively.
The number of the grid points is 64	 64	 64. The
profiles of computed mean velocity and turbulence in-
tensity agree well with the DNS results of Kim et al.
(1986) as shown in Fig. 11.

A total of eight DNS runs are performed for inves-
tigating the influences of the parameters such as the void
ratio, the bubble size, buoyancy, and surface tension on
the drag reduction. The parameters are summarized in
Table 1. With the presently available computer re-
sources, the Reynolds number at which DNS compu-
tations can be performed is limited to the order of Res ¼
100, which is at least an order of magnitude smaller than

in the experiment by Takahashi et al. (1997). One way to
achieve higher Reynolds number in the computation is
to perform large eddy simulation by introducing a
subgrid scale model. However, since this is the first ap-
plication of the present numerical method to a turbulent
flow, subgrid scale models are not used in order to avoid
uncertainty and complexity. On the other hand, the
other parameters such as the Weber number, or the
Froude number are on the same order as the experi-
ment.

At the beginning of the computation (nondimen-
sional time tþ ¼ u2s=m ¼ 0), the velocity field was ini-
tialized by an instantaneous velocity field of the single
phase flow and bubbles were introduced at the same
time. When the number of bubbles in the periodic
computational domain was 54, bubbles were initially

Fig. 9. Time evolution of the bubble shape and position projected on

the x–z plane for a rising bubble of D ¼ 3 mm.

Fig. 10. Iso-surfaces of the longitudinal component of the vorticity

x3 ¼ 
2 for a rising bubble of D ¼ 3 mm. The dark and light surfaces

indicate positive (counter clockwise rotation when seen from the top)

and negative vorticity, respectively. The bubble surface is shown by

wire frames.
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placed on the grid of 6	 3	 3 in the streamwise, wall-
normal, and spanwise directions respectively. Grids of
3	 3	 4, 3	 2	 2, and 3	 3	 1 were used for the
initial locations for computations with 36, 18 and 9
bubbles respectively. An example of the initial distri-
bution of bubbles is shown in Fig. 12. The influence of
the initial distribution of bubbles disappeared before

tþ ¼ 100, as the bubbles were stirred by the turbulence
in the liquid phase. At the beginning of the computa-
tion, the bubbles suddenly appeared as if the water in
the spherical regions suddenly turned into air without
influencing the velocity field. This unnatural situation
causes oscillation of bubble shapes. However, this os-
cillation was quickly damped by the viscous effect and
vanished before tþ ¼ 10.

The mean pressure gradient was automatically ad-
justed so that the volume flow rate was kept constant.
The computational domain is periodic in the streamwise
and spanwise directions for both phases. When a bubble
passes through a periodic boundary, the bubble is cut
into two pieces (or four at the corner), and they are
computed at the both sides of the periodic boundary.

The same computational domain, and the same
number of grid points as the single phase flow compu-
tation were used. The grid requirements to resolve
bubbles restrict the size of bubbles which can be com-
puted in the same framework as the boundary layer
flow. As summarized in Table 1, the bubble diameter in
the computations ranged between 0.40 and 0.63 H. The
number of grid points in the streamwise direction, in
which the grid spacing was the largest, was from four to
six, while in the spanwise and wall-normal directions the
number was twice or more. This resolution is close to the
minimum required resolution for a single rising bubble
as investigated in the previous section. However, since
the relative velocity between bubbles and surrounding
fluid is much smaller in the channel flow than in the case
of a rising bubble, this resolution is supposed to be
sufficient (Takiguchi et al., 1998).

The bubble size can be scaled by the boundary layer
thickness and by the size of the wall-turbulence struc-
ture. The first one, D=H was between 0.40 and 0.63 in
the present DNS, while this ratio was between 0.1 and
0.2 in the experiment. In this respect the bubble size is
large in the present DNS computations, and it must be
assumed that the results are influenced by this difference.

On the other hand, the bubble size in the viscous unit
Dþ was between 71 and 113 in the present computations,
while in the experiment Dþ was about 200. If we assume

Fig. 11. DNS of single phase turbulent channel flow: (a) mean velocity

and (b) turbulence intensities.

Table 1

Condition of computation for DNS of fully developed turbulent

channel flow

Run We 1=Fr2 Dþ NB a (%) Cf

0 – 0 – – 0.0 1.0

1 9.2 0 90 54 8.6 1.23

2 37.0 0 90 54 8.6 1.16

3 9.2 0 90 18 2.9 1.12

4 37.0 0 90 18 2.9 1.12

5 9.2 6:8	 103 90 18 2.9 1.11

6 7.3 0 71.4 36 2.9 1.15

7 7.3 5:4	 103 71.4 36 2.9 1.12

8 11.6 0 113 9 2.9 1.10

Fig. 12. Initial distribution of bubbles at tþ ¼ 0 in the DNS Run-1 and

2 of the bubbly channel flow.
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the scale of wall-turbulence structure can be scaled by
the viscous unit, the bubble size in the computation in
this respect is small. Therefore, unfortunately, the fol-
lowing results cannot be directly compared with the
experiment. The numerical results are used to discuss
qualitative influences of the bubbles and the bubble re-
lated parameters on the turbulence and the frictional
drag.

4.2. Results and discussion

It is supposed that the effect of bubbles on turbulent
boundary layer can appear in two ways. One is inter-
action between bubbles and shear flow, which can also
occur in a laminar shear flow. A bubble placed in a shear
flow causes local flow to satisfy the stress free condition
at the bubble surface. This results in additional dissi-
pation, and its macroscopic influence can be expressed
by the effective viscosity defined as

leff ¼ 1ð þ aÞlL ð4Þ
in which lL is the viscosity of water. At a low Reynolds
number, at which the laminar dissipation in the bulk
flow has significant contribution, this additional laminar
dissipation is supposed to increase the frictional drag.
The second effect of bubbles is the modification of tur-
bulence in the liquid phase. Gore and Crowe (1989) have
shown solid particles in the carrier phase either increase
or decrease the turbulence intensity depending on the
ratio between the particle size and the characteristic
length scale of turbulence. The influence of gas bubbles
on turbulence of the carrier liquid phase has not been
extensively studied yet. However, the recent experiment
of a bubbly channel flow by Kato et al. (1999) suggested
that the presence of bubbles suppressed the Reynolds
stress and the intensity of streamwise fluctuation.

Fig. 13 shows the time histories of the normalized
mean wall shear stress Cf for the DNS runs 0, 3 and 6.
After the bubbles are introduced at tþ ¼ 0, the mean

wall shear stress increases and reaches a steady level at
tþ ¼ 400–800. The average values of Cf computed for
1000 viscous time units from tþ ¼ 800 are shown in the
Table 1. Hereafter, time-average denotes an time-aver-
age from tþ ¼ 800 to 1800. It is noted that the frictional
drag is increased in all cases unlike in the experiment.
This is partially due to the increase in the effective vis-
cosity, which dominates over the other effects of bub-
bles.

Fig. 14 shows the values of Cf versus four parameters
a, Dþ, Fr and We. The influence of the void ratio a for a
fixed diameter and surface tension at zero gravitational
acceleration is shown in Fig. 14(a). The value of Cf is
increased as the void ratio a is increased, since the in-
crease in the effective viscosity is proportional to the
void ratio. Fig. 14(b) shows that Cf is decreased with
increasing bubble diameter Dþ for a fixed void ratio
a ¼ 2:9% at zero gravitational acceleration. As shown
later, the increase in the turbulence intensity at the same
void ratio is larger with smaller bubbles. Perhaps this is
related to the increase in the frictional drag.

The influence of the gravitational acceleration in the
direction normal to the walls decreases Cf as shown
in Fig. 14(c) for two diameters at a fixed void ratio
a ¼ 2:9%. Snapshots of the distribution of bubbles at
tþ ¼ 1500 for Run-6 and 7 shown in Fig. 15 and profiles
of time-averaged void ratio for the same runs in Fig. 16
indicate that bubbles are concentrated toward the top
wall to which the buoyancy force points. This concen-
tration of bubbles is supposed to suppress turbulent
momentum transport in the wall-normal direction. Fig.
14(d) shows that effect of the surface tension on Cf is
negligible, although the deformation of bubbles is very
different as shown in Fig. 17. The effect of bubble size on
the reduction of skin friction is one of the major issues
that have not been addressed in previous experimental
studies, altough it is practically very important. How-
ever, the recent experimental study by Takahashi et al.
(2001) has shown that the drag reduction rate has a
positive correlation with the size of bubbles. When the
bubble size is increased, the ratio of the bubble size to
the scale of turbulence or to the boundary layer thick-
ness increases proportionally. At the same time, the ef-
fect of buoyancy relatively increases, and the effect of
surface tension decreases. The present numerical results
suggest that the relative increase in buoyancy and the
size ratio may have positive effect on the drag reduction.

Fig. 18 shows profiles of the turbulence intensity
components for the DNS Run-0, 1, 3, 6 and 8. The in-
fluence of the void ratio is compared in the left column
of three figures, and that of the bubble diameter is
compared in the right column. In all the cases with bub-
bles the wall-normal and spanwise components are in-
creased, the influence on the streamwise component is
not as clear as that for the other two components.
However, the streamwise component is decreased in the

Fig. 13. Time history of the normalized friction coefficient in the DNS

of the bubbly channel flow.
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DNS run-8, when the void ratio a ¼ 8:6%. This quali-
tatively agrees with the measurement by Kato et al.
(1999).

It is supposed that bubbles can influence the velocity
fluctuation in two ways. One is the so-called ‘‘pseudo-
turbulence’’, that is fluctuation of velocity signals due to
passage of bubbles, and the second is modulation of
liquid phase turbulence. The pseudo-turbulence is large
when drift between the bubble and the liquid medium is
present. The magnitude of the velocity fluctuation due
to passage of bubbles is on the order of the drift velocity,
and the fluctuation range over the distance of the order
of the bubble diameter (Sugiyama et al., 2001). Even
when drift between two phases is negligibly small like in
the cases investigated in this study, interaction between
bubbles and shear flow can cause pseudo-turbulence. It
is assumed that the magnitude of the fluctuation is a
function of the bubble diameter and the rate of shear,
and that the distance which the fluctuation can reach is
on the order of the thickness of the surface boundary
layer around bubbles. These assumptions can explain
that the increase in the wall-normal and spanwise in-
tensities is larger at Dþ ¼ 71 than at Dþ ¼ 113 at the
same void ratio of a ¼ 2:9%. If the void ratio is kept
constant, smaller bubble diameter means larger inter-

facial area and larger volume of the surface boundary
layer in which velocity field is disturbed by the interac-
tion between bubbles and shear flow. However, this
pseudo-turbulence mechanism cannot explain the de-
crease in the streamwise component of the fluctuation,
since the magnitude of the bubble-induced velocity in a
shear flow is large in the direction of the flow. It is
supposed that mechanisms other than this suppresses
the streamwise fluctuation in the liquid phase turbu-
lence.

5. Conclusions

A computational method for investigating the inter-
actions between bubbles and turbulence has been de-
veloped in this study. The method employs a special
front-tracking method, which tracks individual bubbles
by the center positions and radius distributions. The
advantage of the new method is that the interface cur-
vature can be calculated more accurately for a given grid
resolution. The accuracy validation carried out for a
problem of single rising bubble has shown that the new
method capable of accurate simulation of bubble dy-
namics with relatively small number of grid points.

Fig. 14. Influence of a, Dþ, Fr and We on the friction coefficient in the DNS of the bubbly channel flow.
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This method was then applied to DNS computations
of a low Reynolds number turbulent channel flow con-
taining bubbles. The reduction of the frictional drag

found in experiments were not confirmed in the present
computations probably because of the low Reynolds
number and the large bubble size relative to the channel
width. On the other hand, the observed modification in
the profiles of turbulence intensities were found to be in
qualitative agreement with the experiment by Kato et al.
(1999).

The validation of this numerical method applied to a
turbulent flow is not yet sufficient. However, the pre-
liminary computations in this study show that DNS of
deforming bubbles in a low Reynolds number turbulent
flow is feasible by use of the present numerical method.
The number of grid points in one direction can be
multiplied by eight with presently available computer
resources by parallel processing. Considering the reso-
lution required for resolving a bubble, the ratio of the
bubble diameter to the channel half width (D=H ) can be
reduced to 0.05–0.1, which overlaps with the experi-
mental conditions. The gap in the Reynolds number
can be filled by introducing subgrid scale turbulence
models. Since the present numerical method explicitly
model the interactions between phases, it is expected

Fig. 15. Distribution of bubbles with or without gravity in the DNS of the bubbly channel flow. (a) 1=Fr2 ¼ 0, (b) 1=Fr2 ¼ 0:00536.

Fig. 16. Profiles of the time-averaged void ratio in the DNS of the

bubbly channel flow.
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Fig. 17. Typical shape of bubbles near the wall in the DNS of the bubbly channel flow. (a) We ¼ 9, (b) We ¼ 37.

Fig. 18. Profiles of turbulence intensities in the DNS of the bubbly channel flow.
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that subgrid scale models for single phase flows can be
used for modeling small scale turbulence in the liquid
phase.
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